Session Topics for the 2021 AAPT Virtual Winter Meeting

(This list is subject to change)

- 1. 21st Century Physics in the Classroom
- 2. A More Healthy Option
- 3. An introductory high school/university course in scientific programming
- 4. Apparatus for Teaching Modern or Contemporary Physics
- 5. Applied improvisation for physics
- 6. Applying Network Analysis to Physics Education
- 7. Architecture of Glowscript Python
- 8. Assessing and Promoting Pedagogical Content Knowledge of Undergraduate Teaching Assistants
- 9. Astrobiology & Exoplanets
- 10. Astronomy Research Seminar
- 11. Best Practices in Educational Technology
- 12. Bringing Students into the 3rd Dimension
- 13. B-sides and Bloopers from Famous Physicists
- 14. Building a STEM-Wide Culture of Change
- 15. Built-In Assessments
- 16. Call for Increased Investment in Accessible Physics Laboratory Courses
- 17. Career Paths for PER students (undergrad to grad and after)
- 18. Citizen Science in the Classroom
- 19. Coding Integration in High School Physics Courses
- 20. Coming to America Teaching from different perspectives
- 21. Curriculum Swap: Creating, Sharing, and Improving Student-centered Physics Activities for Life Science Students
- 22. Do it yourself Sustainable Gamma Ray Detectors
- 23. E-Alliance Network
- 24. Effective Practices in Educational Technology
- 25. Engaging Ways to Introduce Students to Quantum Physics
- 26. EP3: Effective Practices for Physics Programs
- 27. Equity in the Faculty and Post-doc Hiring Process
- 28. Fun and Engaging Labs
- 29. Get the Facts Out

- 30. Higher education in the age of Artificial Intelligence
- 31. Highlights of Astronotes
- 32. Holistic Graduate School Admissions and Support for Graduate Students
- 33. Ideas for Promoting Student Retention
- 34. Improving the Pedagogical Content Knowledge of Teaching Assistants and Instructors
- 35. International Conference in Women in Physics
- 36. Mastery-based grading
- 37. My Favorite Vernier Product
- 38. NGSS & 3-Dimensional Teaching & Learning in Physics
- 39. Paradigms in Physics Potpourri
- 40. Physics Education from Around the World
- 41. Physics Programs at HSIs/MSIs
- 42. PhysTec in 50 States
- 43. PICUP: Cool Computational Stuff!
- 44. PICUP: Exercise Sets for teaching E&M
- 45. PICUP: Exercise Sets for teaching mechanics
- 46. PICUP: Integrating Computational Activities into Introductory (including High School!) Physics
- 47. PIRA Lecture Demo Workshop 1&2 Condensed
- 48. Planetaria in Astronomy Education
- 49. POGIL and teaching methods from other disciplines
- 50. Preserving Your Legacy: Oral Histories of AAPT and Physics Education
- 51. Professional Skills for Students
- 52. PTRA presents Perimeter: Climate
- 53. PTRA: Connecting Resources and Collaborating Across HS, TYC, & FYC
- 54. Pulsar Search Collaboratory for High School Teachers
- 55. Quantum Information / Quantum Computing in the Classroom
- 56. Recent Developments and Perspectives in Research on Student Reasoning
- 57. Recruitment, Preparation, Retention of Teachers from Underrepresented Backgrounds
- 58. Research on equity and inclusion beyond physics
- 59. Research-based Introductory Labs for Mechanics and E&M: Curriculum and Implementation
- 60. Researcher Identity/Positionality in Contrast to the Research
- 61. Resources for Teaching Physics Using Space Science Content

- 62. Ring Flinger Make and Take
- 63. Seeing the Invisible: Using JS9 Data and Image Analysis In Educational Settings
- 64. STEAM Education: What is the international State of Discussion?
- 65. Strategies for Coping and Self-care related to Remote/Hybrid Physics Teaching (all levels)
- 66. Student Topical Discussion & Social
- 67. Student Understanding of Measurement and Uncertainty
- 68. Success Stories of Female Physicists
- 69. Support for Unprotected Faculty and Teachers
- 70. Surviving Administrative Initiatives
- 71. Teaching Physics Toward Social Justice
- 72. Teaching Science in a Culture of Mistrust
- 73. Teaching the Introductory Physics for the Life Sciences (IPLS) course
- 74. Teaching with your mouth closed: basic POGIL strategies for middle school and high school physics teachers
- 75. Technology Playground
- 76. Things We Will Keep from Remote Experiences in Teaching Physics Labs/courses
- 77. Using Big Data and Machine Learning Understand Physics Outcomes
- 78. Using popular media, like cartoons
- 79. What to Say When Your Students Ask You about Condensed Matter
- 80. What's New in Data Collection and Analysis