Reform efforts in introductory physics at Georgia Tech

Marcos Caballero¹ Michael Schatz¹ Keith Bujak² Richard Catrambone² M. Jackson Marr² Matthew Kohlmyer³

¹School of Physics, Georgia Institute of Technology ²School of Psychology, Georgia Institute of Technology ³Department of Physics, North Carolina State University

June 3, 2010 Supported by the NSF (DUE-0942076, DUE-0618519)

North Carolina State University (DUE-0618504) and Purdue University (DUE-0618647).

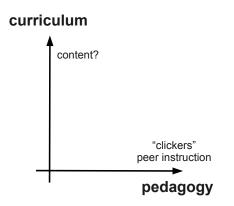
Focus of Reform

- Curriculum
- Computation
- Cognitive Science

Measurement

Introductory Physics @ Georgia Tech

Two Semester (Calculus-Based) Sequence


- Semester 1 Mechanics
- Semester 2 Electromagnetism

Boundary Conditions for Intro. Physics

- ullet ~ 1600 students per semester
- 83% engineering, 17% science majors
- 3 hours of Lecture (150-250 students)
- 3 hour Lab/Recitation (25-40 students)

Reforms in Introductory Physics

Traditional (TRAD) Introductory Physics

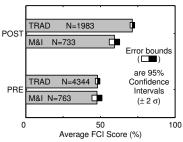
- Content largely unchanged for decades
- Focus on analytic solutions of special cases

Curriculum: Matter and Interactions (M&I)

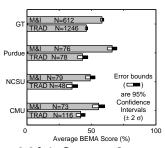
Modern content

- Fundamental principles
- Atoms and structure of matter
- Relativity and quantum physics
- Macro/micro connections

Modern tools/techniques


Computer modeling -Visual Python (VPython)

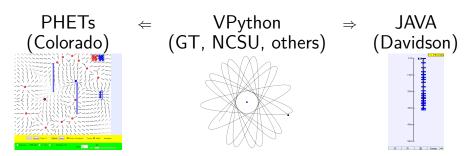
R. Chabay & B. Sherwood, Wiley, 2010 www.matterandinteractions.org


Measurements of Curricular Impact

Mechanics (FCI)

TRAD Outperforms

E&M (BEMA)


M&I Outperforms

Phys. Rev. ST Phys. Educ. Res. 5, 020105 (2009)

Computational Modeling

- Third pillar of science and engineering
- Explore "intractable" systems
- Simulate "impossible" experiments
- Visualize the problem

Spectrum of Computational Modeling

No previous programming experience assumed

Computational Homework Problems

Pilot Semester (N = 520) – Spring 2010

Homework problems are highly customized per student

Evaluation: Proctored assignment

- \sim 60% Success rate
- Physics or Syntactic mistakes?

Rethinking Curriculum Design Using Cognitive Science

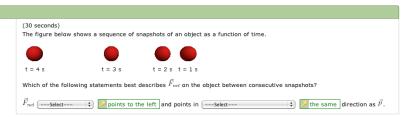
Think Aloud Protocol Studies

- Individual interview of volunteers who work FCI problems while narrating their thoughts
- $N_{TRAD} = 20$, $N_{M\&I} = 14$

Analysis of interview Audio/Video records

NO participants used a fundamental principle

Something is missing


Refocusing the Cognitive Load

Core Skills Development

- Strengthen basic skills to fluency
- Reduce cognitive load

Development & Implementation (Spring 2010)

- Benchtested 300+ exercises
- Basic Skills → Complex Skills

The Future of Intro. Physics @ GT

- Curriculum
 - Testing novel curricula in large courses
- Computation
 - Developing computer modeling skills of our students
- Cognitive Science
 - Improving instruction with advances in how people learn

